Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 108(1): 7-28, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547150

RESUMO

Transglycanases remodel cell-wall polymers, having a critical impact on many physiological processes. Unlike xyloglucan endotransglucosylase (XET) activity, widely studied in land plants, very little is known about charophyte wall-modifying enzymes - information that would promote our understanding of the 'primordial' wall, revealing how the wall matrix is remodelled in the closest living algal relatives of land plants, and what changed during terrestrialisation. We conducted various in-vitro assays for wall-remodelling transglycosylases, monitoring either (a) polysaccharide-to-[3 H]oligosaccharide transglycosylation or (b) non-radioactive oligosaccharide-to-oligosaccharide transglycosylation. We screened a wide collection of enzyme extracts from charophytes (and early-diverging land plants for comparison) and discovered several homo- and hetero-transglycanase activities. In contrast to most land plants, charophytes possess high trans-ß-1,4-mannanase activity, suggesting that land plants' algal ancestors prioritised mannan remodelling. Trans-ß-1,4-xylanase activity was also found, most abundantly in Chara, Nitella and Klebsormidium. Exo-acting transglycosidase activities (trans-ß-1,4-xylosidase and trans-ß-1,4-mannosidase) were also detected. In addition, charophytes exhibited homo- and hetero-trans-ß-glucanase activities (XET, mixed-linkage glucan [MLG]:xyloglucan endotransglucosylase and cellulose:xyloglucan endotransglucosylase) despite the paucity or lack of land-plant-like xyloglucan and MLG as potential donor substrates in their cell walls. However, trans-α-xylosidase activity (which remodels xyloglucan in angiosperms) was absent in charophytes and early-diverging land plants. Transglycanase action was also found in situ, acting on endogenous algal polysaccharides as donor substrates and fluorescent xyloglucan oligosaccharides as acceptor substrates. We conclude that trans-ß-mannanase and trans-ß-xylanase activities are present and thus may play key roles in charophyte walls (most of which possess little or no xyloglucan and MLG, but often contain abundant ß-mannans and ß-xylans), comparable to the roles of XET in xyloglucan-rich land plants.


Assuntos
Carofíceas/enzimologia , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Polissacarídeos/metabolismo , Transferases/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Carofíceas/genética , Carofíceas/fisiologia , Embriófitas , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Mananas/metabolismo , Complexos Multienzimáticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transferases/genética , Xilanos/metabolismo
2.
Nat Commun ; 9(1): 1341, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632298

RESUMO

Transposable elements are in a constant arms race with the silencing mechanisms of their host genomes. One silencing mechanism commonly used by many eukaryotes is dependent on cytosine methylation, a covalent modification of DNA deposited by C5 cytosine methyltransferases (DNMTs). Here, we report how two distantly related eukaryotic lineages, dinoflagellates and charophytes, have independently incorporated DNMTs into the coding regions of distinct retrotransposon classes. Concomitantly, we show that dinoflagellates of the genus Symbiodinium have evolved cytosine methylation patterns unlike any other eukaryote, with most of the genome methylated at CG dinucleotides. Finally, we demonstrate the ability of retrotransposon DNMTs to methylate CGs de novo, suggesting that retrotransposons could self-methylate retrotranscribed DNA. Together, this is an example of how retrotransposons incorporate host-derived genes involved in DNA methylation. In some cases, this event could have implications for the composition and regulation of the host epigenomic environment.


Assuntos
Carofíceas/enzimologia , Carofíceas/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dinoflagellida/enzimologia , Dinoflagellida/genética , Retroelementos , Metilação de DNA/genética , Epigênese Genética , Evolução Molecular , Inativação Gênica , Filogenia
3.
New Phytol ; 218(3): 1049-1060, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460505

RESUMO

Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-ß-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-ß-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-ß-xylan synthase activity, and 1,4-ß-xylan occurs in the K. flaccidum cell wall. These data suggest that plant 1,4-ß-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.


Assuntos
Parede Celular/metabolismo , Carofíceas/enzimologia , Pentosiltransferases/metabolismo , Células Vegetais/metabolismo , Motivos de Aminoácidos , Vias Biossintéticas , Carofíceas/genética , Evolução Molecular , Células HEK293 , Humanos , Pentosiltransferases/química , Filogenia
4.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28827406

RESUMO

Cell wall-modifying enzymes have been previously investigated in charophyte green algae (CGA) in cultures of uniform age, giving limited insight into their roles. Therefore, we investigated the in situ localisation and specificity of enzymes acting on hemicelluloses in CGA genera of different morphologies and developmental stages. In vivo transglycosylation between xyloglucan and an endogenous donor in filamentous Klebsormidium and Zygnema was observed in longitudinal cell walls of young (1 month) but not old cells (1 year), suggesting that it has a role in cell growth. By contrast, in parenchymatous Chara, transglycanase action occurred in all cell planes. In Klebsormidium and Zygnema, the location of enzyme action mainly occurred in regions where xyloglucans and mannans, and to a lesser extent mixed-linkage ß-glucan (MLG), were present, indicating predominantly xyloglucan:xyloglucan endotransglucosylase (XET) activity. Novel transglycosylation activities between xyloglucan and xylan, and xyloglucan and galactomannan were identified in vitro in both genera. Our results show that several cell wall-modifying enzymes are present in CGA, and that differences in morphology and cell age are related to enzyme localisation and specificity. This indicates an evolutionary significance of cell wall modifications, as similar changes are known in their immediate descendants, the land plants. This article has an associated First Person interview with the first author of the paper.


Assuntos
Carofíceas/anatomia & histologia , Carofíceas/crescimento & desenvolvimento , Glicosiltransferases/metabolismo , Parede Celular/metabolismo , Carofíceas/enzimologia , Fluorescência , Glucanos/metabolismo , Glicosilação , Pectinas/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
5.
PLoS One ; 10(5): e0128409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023931

RESUMO

The glycosyltransferase family 43 (GT43) has been suggested to be involved in the synthesis of xylans in plant cell walls and proteoglycans in animals. Very recently GT43 family was also found in Charophycean green algae (CGA), the closest relatives of extant land plants. Here we present evidence that non-plant and non-animal early eukaryotes such as fungi, Haptophyceae, Choanoflagellida, Ichthyosporea and Haptophyceae also have GT43-like genes, which are phylogenetically close to animal GT43 genes. By mining RNA sequencing data (RNA-Seq) of selected plants, we showed that CGA have evolved three major groups of GT43 genes, one orthologous to IRX14 (IRREGULAR XYLEM14), one orthologous to IRX9/IRX9L and the third one ancestral to all land plant GT43 genes. We confirmed that land plant GT43 has two major clades A and B, while in angiosperms, clade A further evolved into three subclades and the expression and motif pattern of A3 (containing IRX9) are fairly different from the other two clades likely due to rapid evolution. Our in-depth sequence analysis contributed to our overall understanding of the early evolution of GT43 family and could serve as an example for the study of other plant cell wall-related enzyme families.


Assuntos
Carofíceas/genética , Evolução Molecular , Glicosiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Carofíceas/enzimologia , Células Eucarióticas/enzimologia
6.
J Exp Bot ; 65(4): 1153-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24449382

RESUMO

Bryophytes, a paraphyletic group which includes liverworts, mosses, and hornworts, have been stated as land plants that under metal stress (particularly cadmium) do not synthesize metal-binding peptides such as phytochelatins. Moreover, very little information is available to date regarding phytochelatin synthesis in charophytes, postulated to be the direct ancestors of land plants, or in lycophytes, namely very basal tracheophytes. In this study, it was hypothesized that basal land plants and charophytes have the capability to produce phytochelatins and possess constitutive and functional phytochelatin synthases. To verify this hypothesis, twelve bryophyte species (six liverworts, four mosses, and two hornworts), three charophytes, and two lycophyte species were exposed to 0-36 µM cadmium for 72 h, and then assayed for: (i) glutathione and phytochelatin quali-quantitative content by HPLC and mass spectrometry; (ii) the presence of putative phytochelatin synthases by western blotting; and (iii) in vitro activity of phytochelatin synthases. Of all the species tested, ten produced phytochelatins in vivo, while the other seven did not. The presence of a constitutively expressed and functional phytochelatin synthase was demonstrated in all the bryophyte lineages and in the lycophyte Selaginella denticulata, but not in the charophytes. Hence, current knowledge according to phytochelatins have been stated as being absent in bryophytes was therefore confuted by this work. It is argued that the capability to synthesize phytochelatins, as well as the presence of active phytochelatin synthases, are ancestral (plesiomorphic) characters for basal land plants.


Assuntos
Aminoaciltransferases/genética , Cádmio/farmacologia , Embriófitas/enzimologia , Fitoquelatinas/metabolismo , Aminoaciltransferases/metabolismo , Briófitas/efeitos dos fármacos , Briófitas/enzimologia , Briófitas/genética , Carofíceas/efeitos dos fármacos , Carofíceas/enzimologia , Carofíceas/genética , Embriófitas/efeitos dos fármacos , Embriófitas/genética , Glutationa/química , Glutationa/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Fitoquelatinas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Traqueófitas/efeitos dos fármacos , Traqueófitas/enzimologia , Traqueófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...